104 research outputs found

    Functional Identification of Catalytic Metal Ion Binding Sites within RNA

    Get PDF
    The viability of living systems depends inextricably on enzymes that catalyze phosphoryl transfer reactions. For many enzymes in this class, including several ribozymes, divalent metal ions serve as obligate cofactors. Understanding how metal ions mediate catalysis requires elucidation of metal ion interactions with both the enzyme and the substrate(s). In the Tetrahymena group I intron, previous work using atomic mutagenesis and quantitative analysis of metal ion rescue behavior identified three metal ions (M(A), M(B), and M(C)) that make five interactions with the ribozyme substrates in the reaction's transition state. Here, we combine substrate atomic mutagenesis with site-specific phosphorothioate substitutions in the ribozyme backbone to develop a powerful, general strategy for defining the ligands of catalytic metal ions within RNA. In applying this strategy to the Tetrahymena group I intron, we have identified the pro-S (P) phosphoryl oxygen at nucleotide C262 as a ribozyme ligand for M(C). Our findings establish a direct connection between the ribozyme core and the functionally defined model of the chemical transition state, thereby extending the known set of transition-state interactions and providing information critical for the application of the recent group I intron crystallographic structures to the understanding of catalysis

    Synthesizing topological structures containing RNA

    Get PDF
    Though knotting and entanglement have been observed in DNA and proteins, their existence in RNA remains an enigma. Synthetic RNA topological structures are significant for understanding the physical and biological properties pertaining to RNA topology, and these properties in turn could facilitate identifying naturally occurring topologically nontrivial RNA molecules. Here we show that topological structures containing single-stranded RNA (ssRNA) free of strong base pairing interactions can be created either by configuring RNA?DNA hybrid four-way junctions or by template-directed synthesis with a single-stranded DNA (ssDNA) topological structure. By using a constructed ssRNA knot as a highly sensitive topological probe, we find that Escherichia coli DNA topoisomerase I has low RNA topoisomerase activity and that the R173A point mutation abolishes the unknotting activity for ssRNA, but not for ssDNA. Furthermore, we discover the topological inhibition of reverse transcription (RT) and obtain different RT?PCR patterns for an ssRNA knot and circle of the same sequence

    Comparison of the Structures and Mechanisms of the Pistol and Hammerhead Ribozymes

    Get PDF
    Comparison of the secondary and three-dimensional structures of the hammerhead and pistol ribozymes reveals many close similarities, so in this work we have asked if they are mechanistically identical. We have determined a new crystal structure of the pistol ribozyme and have shown that G40 acts as general base in the cleavage reaction. The conformation in the active site ensures an in-line attack of the O2′ nucleophile, and the conformation at the scissile phosphate and the position of the general base are closely similar to those in the hammerhead ribozyme. However, the two ribozymes differ in the nature of the general acid. 2′-Amino substitution experiments indicate that the general acid of the hammerhead ribozyme is the O2′ of G8, while that of the pistol ribozyme is a hydrated metal ion. The two ribozymes are related but mechanistically distinct

    General Acid–Base Catalysis Mediated by Nucleobases in the Hairpin Ribozyme

    Get PDF
    The catalytic mechanism by which the hairpin ribozyme accelerates cleavage or ligation of the phosphodiester backbone of RNA has been incompletely understood. There is experimental evidence for an important role for an adenine (A38) and a guanine (G8), and it has been proposed that these act in general acid-base catalysis. In this work we show that a large reduction in cleavage rate on substitution of A38 by purine (A38P) can be reversed by replacement of the 5′-oxygen atom at the scissile phosphate by sulfur (5′-PS), which is a much better leaving group. This is consistent with A38 acting as the general acid in the unmodified ribozyme. The rate of cleavage of the 5′-PS substrate by the A38P ribozyme increases with pH log-linearly, indicative of a requirement for a deprotonated base with a relatively high pK(a). On substitution of G8 by diaminopurine, the 5′-PS substrate cleavage rate at first increases with pH and then remains at a plateau, exhibiting an apparent pK(a) consistent with this nucleotide acting in general base catalysis. Alternative explanations for the pH dependence of hairpin ribozyme reactivity are discussed, from which we conclude that general acid-base catalysis by A38 and G8 is the simplest and most probable explanation consistent with all the experimental data

    New Strategies for Exploring RNA's 2′-OH Expose the Importance of Solvent during Group II Intron Catalysis

    Get PDF
    AbstractThe 2′-hydroxyl group contributes inextricably to the functional behavior of many RNA molecules, fulfilling numerous essential chemical roles. To assess how hydroxyl groups impart functional behavior to RNA, we developed a series of experimental strategies using an array of nucleoside analogs. These strategies provide the means to investigate whether a hydroxyl group influences function directly (via hydrogen bonding or metal ion coordination), indirectly (via space-filling capacity, inductive effects, and sugar conformation), or through interactions with solvent. The nucleoside analogs span a broad range of chemical diversity, such that quantitative structure activity relationships (QSAR) now become possible in the exploration of RNA biology. We employed these strategies to investigate the spliced exons reopening (SER) reaction of the group II intron. Our results suggest that the cleavage site 2′-hydroxyl may mediate an interaction with a water molecule

    Hachimoji DNA and RNA: A genetic system with eight building blocks

    Get PDF
    Reported here are DNA and RNA-like systems built from eight (hachi-) nucleotide letters (-moji) that form four orthogonal pairs. This synthetic genetic biopolymer meets the structural requirements needed to support Darwinism, including a polyelectrolyte backbone, predictable thermodynamic stability, and stereoregular building blocks that fit a Schrödinger aperiodic crystal. Measured thermodynamic parameters predict the stability of hachimoji duplexes, allowing hachimoji DNA to double the information density of natural terran DNA. Three crystal structures show that the synthetic building blocks do not perturb the aperiodic crystal seen in the DNA double helix. Hachimoji DNA was then transcribed to give hachimoji RNA in the form of a functioning fluorescent hachimoji aptamer. These results expand the scope of molecular structures that might support life, including life throughout the cosmos

    Metal-ion rescue revisited: Biochemical detection of site-bound metal ions important for RNA folding

    Get PDF
    ABSTRACT Within the three-dimensional architectures of RNA molecules, divalent metal ions populate specific locations, shedding their water molecules to form chelates. These interactions help the RNA adopt and maintain specific conformations and frequently make essential contributions to function. Defining the locations of these site-bound metal ions remains challenging despite the growing database of RNA structures. Metal-ion rescue experiments have provided a powerful approach to identify and distinguish catalytic metal ions within RNA active sites, but the ability of such experiments to identify metal ions that contribute to tertiary structure acquisition and structural stability is less developed and has been challenged. Herein, we use the well-defined P4-P6 RNA domain of the Tetrahymena group I intron to reevaluate prior evidence against the discriminatory power of metal-ion rescue experiments and to advance thermodynamic descriptions necessary for interpreting these experiments. The approach successfully identifies ligands within the RNA that occupy the inner coordination sphere of divalent metal ions and distinguishes them from ligands that occupy the outer coordination sphere. Our results underscore the importance of obtaining complete folding isotherms and establishing and evaluating thermodynamic models in order to draw conclusions from metal-ion rescue experiments. These results establish metal-ion rescue as a rigorous tool for identifying and dissecting energetically important metal-ion interactions in RNAs that are noncatalytic but critical for RNA tertiary structure

    Identification of recognition residues for ligation-based detection and quantitation of pseudouridine and N6-methyladenosine

    Get PDF
    Over 100 chemical types of RNA modifications have been identified in thousands of sites in all three domains of life. Recent data suggest that modifications function synergistically to mediate biological function, and that cells may coordinately modulate modification levels for regulatory purposes. However, this area of RNA biology remains largely unexplored due to the lack of robust, high-throughput methods to quantify the extent of modification at specific sites. Recently, we developed a facile enzymatic ligation-based method for detection and quantitation of methylated 2′-hydroxyl groups within RNA. Here we exploit the principles of molecular recognition and nucleic acid chemistry to establish the experimental parameters for ligation-based detection and quantitation of pseudouridine (Ψ) and N6-methyladenosine (m6A), two abundant modifications in eukaryotic rRNA/tRNA and mRNA, respectively. Detection of pseudouridylation at several sites in the large subunit rRNA derived from yeast demonstrates the feasibility of the approach for analysis of pseudouridylation in biological RNA samples
    corecore